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Abstract. In this paper, we are concerned with the magnetic effect on the Sobolev solvability of
boundary layer equations for the 2D incompressible MHD system without resistivity. The MHD
boundary layer is described by the Prandtl type equations derived from the incompressible viscous
MHD system without resistivity under the no-slip boundary condition on the velocity. Assuming
that the initial tangential magnetic field does not degenerate, a local-in-time well-posedness in
Sobolev spaces is proved without the monotonicity condition on the velocity field. Moreover, we
show that if the tangential magnetic field of shear layer is degenerate at one point, then the linearized
MHD boundary layer system around the shear layer profile is ill-posed in the Gevrey function space
provided that the initial velocity shear flow is non-degenerately critical at the same point.

1. Introduction and Main Result

In this paper, we consider the initial-boundary value problem for the following two-dimensional
(2D) magnetohydrodynamic (MHD) boundary layer equations in the domain tpt, x, yq : t P r0, T s, x P
T, y P R`u:
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Btu` uBxu` vByu` Bxp´ B
2
yu´ b1Bxb1 ´ b2Byb1 “ 0,

Btb1 ` uBxb1 ` vByb1 ´ b1Bxu´ b2Byu “ 0,

Bxu` Byv “ 0, Bxb1 ` Byb2 “ 0,

pu, v, b2q|y“0 “ 0, lim
yÑ`8

pu, b1qpt, x, yq “ pU,Bqpt, xq,

pu, b1q|t“0 “ pu0, b0qpx, yq,

(1.1)

where T stands for a torus or a periodic domain, R` “ r0,`8q, pu, vq and pb1, b2q are the velocity
and magnetic boundary layer functions respectively, and the known functions U,B and p satisfy
the Bernoulli law:

#

BtU ` UBxU ` Bxp “ BBxB,

BtB ` UBxB “ BBxU.
(1.2)

See the Appendix for the derivation of the system (1.1).
Before stating the main results in this paper, we first review some related works on the Prandtl

boundary layer theories. In fact, without the magnetic field pb1, b2q in (1.1), the system is the classi-
cal Prandtl equations that was firstly derived by L. Prandtl [34] in 1904 to understand the structure
of incompressible fluid with high Reynolds number and physical boundaries. In the 2D case, when
the initial tangential velocity satisfies the monotonicity assumption, Oleinik [32,33] firstly achieved
the local-in-time well-posedness of classical solutions by using the Crocco transformation, and this
well-posedness result was recently reproved by an energy method in the framework of weighted
Sobolev spaces in [1] and [30] independently, where the cancellation mechanism in the convection
terms is observed and essentially used. Also a global in time weak solution was obtained in [41]
under an additional favorable condition on the pressure.
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On the contrary, when the monotonicity condition is violated, separation of the boundary layer
or singularity formation is well expected and observed. For example, E-Engquist in [3] proved that
the smooth solution to the Prandtl equations must blowup in a finite time. Very recently, when
the background shear layer admits a non-degenerate critical point, the ill-posedness (or instability
phenomena) of solutions to both the linearized and nonlinear Prandtl equations was studied, see
[5, 8, 10, 11, 22] and the reference therein. All these results show that the monotonicity condition
plays a key role for the well-posedness theory of solutions in the finite regularity functional spaces.
However, this is not the case in the frameworks of analytic functions and Gevrey regularity classes.
In fact, in the framework of analytic functions, Sammartino and Caflisch [36,37] not only established
the local well-posedness theory of the Prandtl system, but also proved the validity of Prandtl
boundary layer ansatz in this setting by using the abstract Cauchy-Kowalewskaya theorem. We
refer the readers to [13–15,26,28,31,38,42] and the reference therein for more results in the analytic
framework, and [2, 6, 7, 16, 22] in the Gevery framework. It is noted that the above results mainly
concentrated on the two-dimensional case, and there are only a few results in the three-dimensional
case such as [4, 19–21,27].

Motivated by the fifteenth open problem in Oleinik-Samokhin’s classical book [33] (page 500-
503), “15. For the equations of the magnetohydrodynamic boundary layer, all problems of the above
type are still open,” efforts have been made to study the well-posedness of solutions to the MHD
boundary layer equations and to justify the MHD boundary layer ansatz in [12, 23, 24, 39, 40]; see
also [9]. Precisely, when the hydrodynamic and magnetic Reynolds numbers have the same order,
the well-posedness of solutions to the MHD boundary layer equations and the validity of the Prandtl
ansatz were established without any monotone condition imposed on the velocity in [23, 24]. And
the long-time existence of solutions to the MHD boundary layer equations in analytic settings for
two different physical regimes were also studied in [39, 40]. When the magnetic Reynolds number
is much larger than the hydrodynamic Reynolds number, the resistivity terms can be ignored in
the MHD equations. As a consequence, there is no partial viscous effect in normal variable y for
the second equation in (1.1).

The purpose of this paper is to study the well-posedness and ill-posedness of (1.1). First, similarly
to [23], we shall establish a well-posedness theory for the MHD boundary layer equations (1.1) in
weighted Sobolev spaces, provided that the initial tangential magnetic filed is not degenerate. This
shows that the tangential magnetic field prevents the formation of singularity in more general flow
situation that includes reverse flow in the velocity field, no matter whether there is partial viscous
effect in the magnetic boundary layer equation or not. This result on the well-posedness can be
stated as follows.

Theorem 1.1. Suppose that the outflow pU, p,Bqpt, xq in (1.2) is smooth, and the initial data and
boundary conditions in (1.1) are smooth, compatible and satisfy

b0px, yq ě δ0 (1.3)

for some positive constant δ0. Then there exists a time T , such that the initial-boundary value
problem (1.1) admits a unique smooth solution pu, v, b1, b2qpt, x, yq satisfying

b1pt, x, yq ě δ0{2 (1.4)

for all t P r0, T s, px, yq P Tˆ R`.

We remark that the precise smoothness condition and the compatibility condition in the above
Theorem 1.1 will be given later for the concise presentation of the theorem. Theorem 1.1 shows that
the non-degenerate tangential magnetic field has stabilizing effect on boundary layers. On the other
hand, when the magnetic field is absent, the Prandtl equations exhibit instability mechanism in
the framework of Sobolev spaces without the monotonicity condition [5, 8, 11, 22]. Then a natural
question arises as whether such a non-degeneracy condition on the tangential magnetic field is
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necessary for the well-posedness of the system (1.1). Our second result in this paper aims to
answer this question.

For illustration and without loss of generality, we consider (1.1) with the constant outflow pU,Bq.
That is,

pU,Bqpt, xq ” pU0, B0q so that, Bxppt, xq ” 0.

In this case, the equations of (1.1) admit a shear flow solution of the form
`

u, v, b1, b2
˘

pt, x, yq ”
`

uspt, yq, 0, bspyq, 0
˘

,

where the function uspt, yq is a smooth solution to the following heat equation:
$
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%

Btus ´ B
2
yus “ 0, t ą 0, y ą 0,

us|y“0 “ 0, lim
yÑ`8

us “ U0,

us|t“0 “ Uspyq,

(1.5)

with an initial shear layer Uspyq. Consider the linearization of the problem (1.1) around the shear
flow

`

uspt, yq, 0, bspyq, 0
˘

in the domain tpt, x, yq : t P r0, T s, x P T, y P R`u, we obtain
$
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Btu` usBxu` vByus ´ B
2
yu´ bsBxb1 ´ b2b

1
s “ 0,

Btb1 ` usBxb1 ` vb
1
s ´ bsBxu´ b2Byus “ 0,

Bxu` Byv “ 0, Bxb1 ` Byb2 “ 0,

pu, v, b2q|y“0 “ 0, lim
yÑ`8

pu, b1qpt, x, yq “ 0.

(1.6)

For any α, s ě 0, denote

W s,8
α pR`q :“ tf “ fpyq, y P R` : }f}W s,8

α
“ }eαyfpyq}W s,8pR`q ă 8u

and

Eα,β “
 

f “ fpx, yq “
ÿ

kPZ
eikxfkpyq : }fk}W 0,8

α
ď Cα,βe

´β|k|, @k P Z
(

with

}f}Eα,β :“ sup
kPZ

eβ|k|}fk}W 0,8
α pR`q.

It is noted that functions in Eα,β have analytic regularity in x-variable. The following proposition
states the well-posedness of solutions in the analytic function space Eα,β to (1.6).

Proposition 1.1. Suppose us ´ U0 P C
`

R`;W 1,8
α pR`q

˘

and bs ´ B0 P W
1,8
α pR`q. Then, there

exists a constant δ ą 0 such that for any T ą 0 with β ´ δT ą 0, and for any pu0, b0qpx, yq P Eα,β,
the linearized problem (1.6) admits a unique solution satisfying

`

u, b1
˘

pt, x, yq P C
`

r0, T q;Eα,β´δT
˘

with pu, b1q|t“0 “
`

u0, b0
˘

px, yq.

This proposition shows that the linearized problem (1.6) is well-posed in the analytic setting, at
least in local time. Its proof is similar to the Proposition 1 in [5] and the Proposition 1.1 in [25],
thus is omitted for brevity.

Denoted by T pt, sq the solution operator of (1.6)

T pt, sqpu0, b0q :“ pu, b1qpt, ¨q, (1.7)

where pu, b1q is the solution to the problem (1.6) with pu, b1q|t“s “ pu0, b0q. Since the space Eα,β is
dense in the Sobolev type space

Hm
α :“ tf “ fpx, yq, px, yq P Tˆ R` : }f}Hmα “ }fp¨q}HmpT;W 0,8

α pR`qq ă 8u, m ě 0,
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by Proposition 1.1 we can define for all m1,m2 ě 0,

}T }LpHm1
α ,Hm2

α q “ sup
pu0,b0qPEα,β

}T pu0, b0q}Hm2
α

}pu0, b0q}Hm1
α

P R` Y t`8u.

Motivated by the paper [5] on the instability of solutions to the linearized Prandtl equations, the
following result shows that when the background magnetic field profile degenerates at the non-
degenerate critical point of the background velocity shear layer, the linearized problem (1.6) is
ill-posed in Sobolev spaces.

Theorem 1.2. Let uspt, yq be the solution of (1.5) satisfying

us ´ U0 P C
`

R`;W 4,8
α pR`q

˘

X C1
`

R`;W 2,8
α pR`q

˘

,

and bspyq ´B0 PW
4,8
α pR`q. Assume that bspyq and the initial shear layer Uspyq satisfy

D a ą 0, s.t. bspaq “ b1spaq “ U 1spaq “ 0, U2s paq ‰ 0.

Then, there exists σ ą 0 such that for any δ ą 0,

sup
0ďsătďδ

›

›e´σpt´sq
?
|Bx|T pt, sq

›

›

LpHmα ,H
m´µ
α q

“ `8, @α,m ě 0, µ P r0,
1

4
q. (1.8)

Remark 1.1. We remark that the result in Theorem 1.2 improves the previous work [25] significantly.
In [25] the partial viscous term B2

yb1 is included in the second equation of (1.1). Consequently, the

background shear flow solution should take the form of
`

uspt, yq, 0, bspt, yq, 0
˘

in [25], instead of
`

uspt, yq, 0, bspyq, 0
˘

. Under the same conditions on the initial data of puspt, yq, bspt, yqq as those in
Theorem 1.2:

D a ą 0, s.t. bsp0, aq “ Bybsp0, aq “ U 1spaq “ 0, U2s paq ‰ 0,

the same conclusion (1.8) still holds for the linearized problem (1.6) with additional partial diffusion
term B2

yb1 in the second equation of (1.6). More precisely, to obtain the same results in (1.8),

the assumptions Biybsp0, aq “ 0 pi “ 0, 1, ..., 6q are required in [25], which can be relaxed to the

assumptions Biybsp0, aq “ 0 pi “ 0, 1q by the construction of approximate solutions proposed in this
paper.

Comparing the previous results obtained in [23,25] with the results stated in Theorems 1.1 and
1.2, we find that the partial viscous term B2

yb1 in the magnetic boundary layer equation has only few
effects on both the well-posedness of solution to the MHD boundary layer equations (1.1) and the
ill-posednes of solutions to the linearized problem (1.6). This is indeed one of the observations in this
paper. More precisely, when there is no partial viscous term B2

yb1 in MHD boundary layer equations,
we can still establish the same well-posedness theory of solutions as what was proved in [23] provided
that the magnetic field does not degenerate. And when the magnetic field degenerates in the sense
of Remark 1.1, we can show the same ill-posedness result as what was achieved in [25]. However,
different from the energy method used in [23], to prove the well-posedess theory, we need to use
some equivalent Sobolev spaces and the induction method to overcome the difficulties caused by
the absence of partial diffusion term B2

yb1. In addition, as what is stated in Remark 1.1, we find a
new construction of growing modes, which can essentially relax the assumptions required in [25].

The rest of the paper is organized as follows. In Sections 2 and 3 , we will prove the well-posedness
of (1.1) in Sobolev spaces when the tangential magnetic field is not degenerate. Precisely, in Section
2, we reformulate the boundary layer system into a model similar to the model of Chaplygin gas
by variable transformation. In Section 3, we establish the well-posedness theory for the reduced
Chaplygin type model that leads to the well-posedness of the original boundary layer system. In
Section 4, we will prove Theorem 1.2 about the linear instability of (1.6) in Sobolev spaces when
the tangential magnetic field is degenerate at one point. Finally, the formal derivation of MHD
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boundary layer problem (1.1) is given in the Appendix A. The Appendix B gives the proof of
Lemma 3.1.

2. Reformulation of the system

To establish the well-posedness of the boundary layer problem (1.1), the main difficulty comes
from the loss of x´derivatives in the normal components v and b2. To overcome this difficulty,
inspired by [23], from the divergence free condition of the magnetic field in p1.1q, we introduce the
stream function ψ of magnetic field pb1, b2q, such that

Byψ “ b1, ´Bxψ “ b2.

It follows from the second equation in (1.1) that the stream function ψ satisfies the transport
equation:

Btψ ` uBxψ ` vByψ “ 0, (2.1)

with the boundary condition

ψ|y“0 “ 0. (2.2)

Its initial data is given by the initial data b0,

ψp0, x, yq “

ż y

0
b0px, sqds. (2.3)

From p1.3q, one has

Byψp0, x, yq “ b0px, yq ě δ0, (2.4)

which implies that ψp0, x, yq ě 0 is an increasing function with respect to y with

lim
yÑ`8

ψp0, x, yq “ `8.

Then, the transport equation (2.1) and the initial data (2.3) yield that ψpt, x, yq ě 0 is an increasing
function with respect to y for every pt, xq P r0, T s ˆ T, and

lim
yÑ`8

ψpt, x, yq “ `8,

provided that u and v are Lipschitz continuous functions.
In this way, we can introduce a new coordinate transformation,

t̄ “ t, x̄ “ x, ȳ “ ψpt, x, yq. (2.5)

In the new coordinates (2.5), the region tpt, x, yq : t P r0, T s, x P T, y P R`u is mapped into
tpt̄, x̄, ȳq : t̄ P r0, T s, x̄ P T, ȳ P R`u, and the boundary of ty “ 0u (ty “ `8u respectively) becomes
the boundary of tȳ “ 0u (tȳ “ `8u respectively). Also, the equations in (1.1) can be written as

"

Bt̄u` uBx̄u` Bx̄p´ b1Bȳpb1Bȳuq ´ b1Bx̄b1 “ 0,

Bt̄b1 ` uBx̄b1 ´ b1Bx̄u “ 0,
(2.6)

with the boundary condition

u|ȳ“0 “ 0, (2.7)

and the far-field condition

lim
ȳÑ`8

u “ U, lim
ȳÑ`8

b1 “ B. (2.8)

Without any confusion, we still denote the initial data by pu0, b0q “ pu0, b0qpx̄, ȳq.
It is noted that there are no normal components of velocity and magnetic field in the reduced

equations. In the subsequent section, we will study (2.6)-(2.8) with initial data pu0, b0q in some
Sobolev spaces, which in turn yields a corresponding result on the original problem (1.1).
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Remark 2.1. If one sets ρ “ 1{b1, then the equations (2.6) in terms of pρ, uq become
"

Bt̄ρ` uBx̄ρ` ρBx̄u “ 0,

ρBt̄u` ρuBx̄u` ρBx̄p` Bx̄p´ρ
´1q “ Bȳpρ

´1Bȳuq,
(2.9)

which is related to a model of Chaplygin gas.

3. Well-posedness of Solutions

In this section, we will study the initial-boundary value problem (2.6)-(2.8) and prove the well-
posedness of solutions in Theorem 1.1. Without any confusion, we replace the notation of pt̄, x̄, ȳq
by pt, x, yq and write (2.6)-(2.8) as

"

Btb1 ` uBxb1 ´ b1Bxu “ 0,

Btu` uBxu` Bxp´ b1Bypb1Byuq ´ b1Bxb1 “ 0,
(3.1)

with the initial-boundary conditions

pb1, uq|t“0 “ pb0, u0qpx, yq, u|y“0 “ 0, (3.2)

and the far-field conditions

lim
yÑ`8

b1 “ B, lim
yÑ`8

u “ U. (3.3)

Denote

A0pb1, uq “

ˆ

b´1
1 , 0

0, b´1
1

˙

, A1pb1, uq “

ˆ

b´1
1 u, ´1

´1, b´1
1 u

˙

,

and

Bpb1, uq “

ˆ

0, 0

0, b1

˙

.

Then the system (3.1) can be formulated as the following quasi-linear symmetrical system with low
order term and partial diffusivity,

A0pb1, uqBt

ˆ

b1
u

˙

`A1pb1, uqBx

ˆ

b1
u

˙

“ By

ˆ

Bpb1, uqBy

ˆ

b1
u

˙˙

´

ˆ

0

b´1
1 Bxp

˙

. (3.4)

Here A0 is a positive definite, symmetric matrix, provided that b1 ą 0, and the matrix A1 is
symmetric.

To state the main result in this section, we define some function spaces. Set

Ω “ tpx, yq : x P T, y P R`u,
and

ΩT “ r0, T s ˆ Ω “ tpt, x, yq : t P r0, T s, x P T, y P R`u.

Denote by HkpΩq the classical Sobolev spaces of function f P HkpΩq such that

}f}HkpΩq :“

˜

ÿ

α1`α2ďk

}Bα1
x B

α2
y f}2L2pΩq

¸
1
2

ă 8.

The derivative operator with multi-index is denoted as

Bα “ B
α1
t B

α2
x B

α3
y , α “ pα1, α2, α3q P N3 with |α| “ α1 ` α2 ` α3.

The Sobolev space and norm are thus defined as

HmpΩT q “ tfpt, x, yq : }f}HmpΩT q “ sup
0ďtăT

}fptq}Hm ă 8u
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with

}fptq}Hm “

¨

˝

ÿ

|α|ďm

}Bαfpt, ¨q}2L2pΩq

˛

‚

1{2

.

Similarly, we denote the tangential derivative operator

Bατ “ B
α1
t B

α2
x , α “ pα1, α2q with |α| “ α1 ` α2,

and define the following non-isotropic Sobolev space

}fptq}Bk1,k2 “

¨

˝

ÿ

|α|ďk1,0ďqďk2

}Bατ B
q
yfpt, ¨q}

2
L2pΩq

˛

‚

1{2

.

Note that

}fptq}2Hm “

m
ÿ

j“0

}fptq}2Bm´j,j . (3.5)

Moreover, we define

}fptq}Ck “
ÿ

|α|`qďk

}Bατ B
q
yfpt, ¨q}L2

`

Tx;L8pR`,yq
˘.

We shall use the notation A À B meaning |A| ď C|B| with a generic constant C ą 0.
The following inequality will be used frequently and its proof will be given in Appendix B.

Lemma 3.1. For suitable functions u and v, it holds that for any α, β P N3, |α| ` |β| ď m with
m ě 2,

}pBαu ¨ Bβvqpt, ¨q}L2pΩq À }uptq}Hm}vptq}Hm , (3.6)

and

}pBαu ¨ Bβvqpt, ¨q}L2pΩq À }uptq}Cm}vptq}Hm . (3.7)

Now, we state the main result in this section.

Theorem 3.1 (Local existence). Let m ě 4, and suppose that the trace pU,B, pqpt, xq of the outflow
satisfies

sup
0ďtďT

ÿ

|α|ď2m

}Bατ pU,B, pqpt, ¨q}L2pTxq ďM (3.8)

for some positive constant M . Assume that the initial data pu0, b0q satisfies
`

b0 ´Bp0, xq, u0 ´ Up0, xq
˘

P H3mpΩq, b0 ě δ0 (3.9)

for some positive constant δ0, and satisfies the compatibility conditions up to the m´th order for
the initial-boundary problem (3.4) with (3.2)-(3.3). Then there exists a positive T˚, such that the
problem (3.4), (3.2)-(3.3) admits a unique solution pb1, uq satisfying

b1pt, x, yq ě δ0{2, pt, x, yq P ΩT˚ , (3.10)

and

b1 ´Bpt, xq P HmpΩT˚q, u´ Upt, xq P HmpΩT˚q, Byu P L
2p0, T˚;H

mq. (3.11)

Remark 3.1. The requirements of initial time regularity of solutions can be changed into the re-
quirements of space regularity of initial data in (3.9) through the equations (3.1). This is the reason
why we require the Sobolev space index to be 3m in (3.9).
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To prove Theorem 3.1, we will use the Picard iteration and the fixed point theorem. For this
purpose, we first homogenize the boundary and far-field conditions. Precisely, let φpyq be a smooth
function satisfying 0 ď φpyq ď 1 and

φpyq “

"

0, 0 ď y ď 1,

1, y ě 2.

Write

b1 “ b`Bpt, xq, u “ v ` Upt, xqφpyq,

and from (3.2)-(3.3) we obtain the following boundary and far-field conditions,

v|y“0 “ 0, lim
yÑ`8

pb, vqpt, x, yq “ 0,

and the initial data

pb, vqp0, x, yq “
´

b0px, yq ´Bp0, xq, u0px, yq ´ Up0, xqφpyq
¯

. (3.12)

From (3.1), it follows that
$

&

%

Btb` pv ` UφqBxb´ pb`BqBxv `Bxv ´ φUxb “ r1,

Btv ´ pb`BqBxb` pv ` UφqBxv ´ pb`BqBy
`

pb`BqByv ` φyUb
˘

´pφyyUB `Bxqb` φUxv “ r2,

(3.13)

with
#

r1 “ ´Bt ´ φUBx ` φBUx “ p1´ φqpUBx ´BUxq,

r2 “ ´Bxp´ φUt `BBx ´ φ
2UUx ` φyyUB

2 “ p1´ φqUt ` p1´ φ
2qUUx ` φyyUB

2,

where we have used (1.2). Moreover, by the assumptions in (3.8), it holds

}pr1, r2q}HmpΩT q ď CM3 (3.14)

for some constant C ą 0.
Next, set

pbj0, v
j
0qpx, yq :“ pB

j
t b, B

j
t vqp0, x, yq, 0 ď j ď m. (3.15)

It follows from the assumptions in Theorem 3.1 that pbj0, v
j
0qpx, yq P H

mpΩq, which can be derived
from the equations (3.13) and initial values pb, vqp0, x, yq of (3.12) by induction with respect to j.
Moreover, the assumptions in Theorem 3.1 imply that there exists a positive constant M0 ą 1,
depending only on M and pb, vqp0, x, yq, such that

m
ÿ

j“0

›

›pbj0, v
j
0q
›

›

H3m´2jpΩq
ďM0. (3.16)

3.1. Construction of approximate solution sequence. In this subsection, we will construct
an approximate solution sequence tvnpt, x, yqu8n“0 “ tpb

n, vnqpt, x, yqu8n“0 to the system (3.13).
Firstly, denote

vj0px, yq :“ pbj0, v
j
0qpx, yq,

and define the zero-th approximate solution v0 of (3.13) as the following,

v0pt, x, yq “ pb0, v0qpt, x, yq :“
m
ÿ

j“0

tj

j!
vj0px, yq. (3.17)

It is straightforward to check that

v0pt, x, yq P HmpΩT q. (3.18)
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Moreover, there exists a 0 ă T0 ď T such that

b0pt, x, yq `Bpt, xq ě
δ0

2
, @ pt, x, yq P ΩT0 .

Next, we construct vn`1 “ pbn`1, vn`1q, n ě 0 by induction. Precisely, suppose that the n-th
order approximate solution vn “ pbn, vnq P HmpΩTnq, n ě 0 is obtained for some 0 ă Tn ď T0 and
satisfies

bnpt, x, yq `Bpt, xq ě
δ0

2
, B

j
tv

np0, x, yq “ vj0px, yq, for pt, x, yq P ΩTn , 0 ď j ď m. (3.19)

We define vn`1pt, x, yq “ pbn`1, vn`1qpt, x, yq by solving the following linear initial-boundary value
problem, i.e., the iteration scheme of nonlinear problem (3.13),

$

&

%

Btb
n`1 ` pvn ` UφqBxb

n`1 ´ pbn `BqBxv
n`1 `Bxv

n`1 ´ φUxb
n`1 “ r1,

Btv
n`1 ´ pbn `BqBxb

n`1 ` pvn ` UφqBxv
n`1 ´ pbn `BqBy

`

pbn `BqByv
n`1 ` φyUb

n`1
˘

´pφyyUB `Bxqb
n`1 ` φUxv

n`1 “ r2,
(3.20)

with the initial data

bn`1p0, x, yq “ b0px, yq ´Bp0, xq, vn`1p0, x, yq “ u0px, yq ´ φpyqUp0, xq, (3.21)

and the boundary conditions

vn`1|y“0 “ 0, lim
yÑ`8

pbn`1, vn`1qpt, x, yq “ 0. (3.22)

Direct computations show that

B
j
tv

n`1p0, x, yq “ vj0px, yq P HmpΩq, 0 ď j ď m. (3.23)

Then, it is standard to show the existence of solutions to the linearized problem (3.20)-(3.22) in a
time interval t P r0, Tn`1s with 0 ă Tn`1 ď Tn. Moreover,

vn`1 “ pbn`1, vn`1q P HmpΩTn`1q.

We only need to derive the uniform estimates of vn`1 in HmpΩTn`1q, which guarantee that the

life-span Tn`1 of the approximate solution vn`1 has a strictly positive lower bound as n goes to
infinity. In the mean time, the positive lower boundedness of bn`1`Bpt, xq can be preserved. That
is, there is a 0 ă T˚ ď T such that for any n ě 0,

Tn`1 ě T˚, bn`1pt, x, yq `Bpt, xq ě
δ0

2
in ΩT˚ .

Now in order to prove the well-posedness of the nonlinear problem (3.4), (3.2)-(3.3), we will
show that the functional mapping from vn to vn`1 is a contraction mapping in L2 sense, cf. [29].
Therefore, it follows that the approximate solution sequence tvnpt, x, yqu8n“0 is a Cauchy sequence in
HkpΩT˚qpk ă mq, and it converges strongly to some function vpt, x, yq “ pb, vqpt, x, yq in HkpΩT˚q.
Then, it is straightforward to verify that pb ` B, v ` Uφq is a unique solution to (3.4), (3.2)-(3.3)
by letting nÑ `8 in (3.20).

For this purpose, we define the closed set ET pM˚q in HmpΩT q,

ET pM˚q “

"

fpt, x, yq “ pf1, f2qpt, x, yq P HmpΩT q : }f}HmpΩT q ďM˚, f1 `Bpt, xq ě
δ0

2

*

,

where M˚ is a positive constant to be determined later. As mentioned above, suppose vn “
pbn, vnq P ET pM˚q for some T independent of n, we will prove vn`1 “ pbn`1, vn`1q P ET pM˚q.
That is, we prove the mapping

Π : vn ÞÑ vn`1 (3.24)
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defined by solving the linear iteration problem (3.20)-(3.22) is a mapping from ET pM˚q to ET pM˚q

itself for some small T independent of n. Moreover, we also prove the mapping Π is a contraction
mapping in L2.

Below, we will focus on the uniform energy estimates of vn`1 defined in (3.20) by assuming that
vn P ETn and the proof is divided into three parts which are given in the next subsections 3.2
to 3.5 respectively. Before that, we introduce some notations. Denote by the notation r¨, ¨s the
commutator, and by Pp¨q a generic polynomial functional which may vary from line to line.

3.2. L2-estimate. In this subsection, we will derive the L2 estimate of solutions to (3.20). Multi-
plying the first equation in p3.20q by bn`1 and multiplying the second equation in p3.20q by vn`1

respectively, adding them together and integrating the resulting equation over Ω, we obtain

1

2

d

dt

ż

Ω
pbn`1q2 ` pvn`1q2dxdy

`

ż

Ω
bn`1

 

pvn ` UφqBxb
n`1 ´ pbn `BqBxv

n`1 `Bxv
n`1 ´ φUxb

n`1
(

dxdy

`

ż

Ω
vn`1

 

´pbn `BqBxb
n`1 ` pvn ` UφqBxv

n`1 ´ pbn `BqBy
“

pbn `BqByv
n`1 ` φyUb

n`1
‰

´pφyyUB `Bxqb
n`1 ` φUxv

n`1
(

dxdy

“

ż

Ω
r1 ¨ b

n`1 ` r2 ¨ v
n`1dxdy.

(3.25)

Note that
ˇ

ˇ

ˇ

ˇ

ż

Ω
bn`1

“

pvn ` UφqBxb
n`1 ´ pbn `BqBxv

n`1
‰

` vn`1
“

´ pbn `BqBxb
n`1 ` pvn ` UφqBxv

n`1
‰

dxdy

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

Ω
´Bx pv

n ` Uφq
pbn`1q2 ` pvn`1q2

2
` Bxpb

n `Bqbn`1vn`1dxdy

ˇ

ˇ

ˇ

ˇ

À p1` }vnptq}H3q

ż

Ω
|vn`1ptq|2dxdy,

(3.26)

where the Sobolev embedding inequality is used in the last inequality.
Then, by the boundary condition p3.22q and integration by parts, we have

´

ż

Ω
vn`1 ¨ pbn `BqBy

“

pbn `BqByv
n`1 ` φyUb

n`1
‰

dxdy

“

ż

Ω

“

pbn `BqByv
n`1 ` Byb

nvn`1
‰

¨
“

pbn `BqByv
n`1 ` φyUb

n`1
‰

dxdy

ě
1

2

ż

Ω

“

pbn `BqByv
n`1

‰2
dxdy ´

1

2

ż

Ω
pByb

nvn`1q2 ` pφyUb
n`1q2dxdy

ě
δ2

0

8

ż

Ω

`

Byv
n`1ptq

˘2
dxdy ´ C

`

1` }vnptq}2H3

˘

ż

Ω
|vn`1ptq|2dxdy,

(3.27)

where the following elementary inequality is used in the first inequality:

pa` bqpa` cq ě
1

2
pa2 ´ b2 ´ c2q, (3.28)

and the lower boundedness (3.19) of bn `B is used in the second inequality.
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Next, it is straightforward to show
ˇ

ˇ

ˇ

ˇ

ż

Ω
bn`1 ¨ pBxv

n`1 ´ φUxb
n`1q ` vn`1 ¨

“

´ pφyyUB `Bxqb
n`1 ` φUxv

n`1
‰

dxdy

ˇ

ˇ

ˇ

ˇ

À

ż

Ω
|vn`1ptq|2dxdy. (3.29)

Consequently, plugging (3.26)-(3.29) into (3.25) yields

d

dt

›

›vn`1ptq
›

›

2

L2pΩq
`
›

›Byv
n`1ptq

›

›

2

L2pΩq

À
`

1` }vnptq}2H3

˘

}vn`1ptq}2L2pΩq `

ż

Ω
r1 ¨ b

n`1 ` r2 ¨ v
n`1dxdy.

(3.30)

3.3. Estimates on tangential derivatives. Applying the tangential derivatives Bατ to the first
and second equations in p3.20q with |α| ď m and m ě 4, multiplying them by Bατ b

n`1 and Bατ v
n`1

respectively, adding them together and integrating the resulting equation over Ω yield

1

2

d

dt

ż

Ω
|Bατ v

n`1|2ptqdxdy

`

ż

Ω
Bατ

 

pvn ` UφqBxb
n`1 ´ pbn `BqBxv

n`1 `Bxv
n`1 ´ φUxb

n`1
(

Bατ b
n`1dxdy

`

ż

Ω
Bατ

 

´pbn `BqBxb
n`1 ` pvn ` UφqBxv

n`1 ´ pbn `BqBy
“

pbn `BqByv
n`1 ` φyUb

n`1
‰

´pφyyUB `Bxqb
n`1 ` φUxv

n`1
(

Bατ v
n`1dxdy

“

ż

Ω
Bατ r1 ¨ B

α
τ b
n`1 ` Bατ r2 ¨ B

α
τ v

n`1dxdy.

(3.31)

Notice that
ż

Ω
Bατ

`

pvn ` UφqBxb
n`1 ´ pbn `BqBxv

n`1
˘

Bατ b
n`1

` Bατ

`

´pbn `BqBxb
n`1 ` pvn ` UφqBxv

n`1
˘

Bατ v
n`1dxdy

“

ż

Ω
´Bxpv

n ` Uφq
|Bατ v

n`1|2

2
` Bxpb

n `Bq
`

Bατ b
n`1 ¨ Bατ v

n`1
˘

dxdy

`

ż

Ω

`

rBατ , v
n ` Uφs Bxb

n`1 ´ rBατ , b
n `Bs Bxv

n`1
˘

¨ Bατ b
n`1

`
`

´rBατ , b
n `Bs Bxb

n`1 ` rBατ , v
n ` Uφs Bxv

n`1
˘

¨ Bατ v
n`1dxdy.

(3.32)

It follows, from (3.6) and m ě 4, that
›

›rBατ , v
n ` Uφs Bxb

n`1
›

›

L2pΩq
À

ÿ

|β|“1

›

›

›
Bβτ pv

n ` Uφqptq
›

›

›

Hm´1

›

›Bxb
n`1ptq

›

›

Hm´1

Àp1` }vnptq}Hmq}bn`1ptq}Hm .

(3.33)

By using (3.7) and (3.8), we have

›

›rBατ , b
n `Bs Bxv

n`1
›

›

L2pΩq
À

¨

˝

ÿ

|β|“1

›

›

›
Bβτ b

nptq
›

›

›

Hm´1
`

›

›

›
BβτBptq

›

›

›

Cm´1

˛

‚

›

›Bxv
n`1ptq

›

›

Hm´1

Àp1` }bnptq}Hmq}vn`1ptq}Hm .

(3.34)
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Also,
›

›rBατ , b
n `Bs Bxb

n`1
›

›

L2pΩq
`
›

›rBατ , v
n ` Uφs Bxv

n`1
›

›

L2pΩq
À p1` }vnptq}Hmq}vn`1ptq}Hm .

Consequently, it leads to
ˇ

ˇ

ˇ

ż

Ω
Bατ

`

pvn ` UφqBxb
n`1 ´ pbn `BqBxv

n`1
˘

Bατ b
n`1

` Bατ

`

´pbn `BqBxb
n`1 ` pvn ` UφqBxv

n`1
˘

Bατ v
n`1dxdy

ˇ

ˇ

ˇ

À p1` }vnptq}Hmq}vn`1ptq}2Hm .

(3.35)

Next,

´

ż

Ω
Bατ

 

pbn `BqBy
“

pbn `BqByv
n`1 ` φyUb

n`1
‰(

¨ Bατ v
n`1dxdy

“ ´

ż

Ω
pbn `BqBατ By

“

pbn `BqByv
n`1 ` φyUb

n`1
‰

¨ Bατ v
n`1dxdy

´
ÿ

βďα,|β|“1

ż

Ω
CβαB

β
τ pb

n `BqBα´βτ By
“

pbn `BqByv
n`1 ` φyUb

n`1
‰

¨ Bατ v
n`1dxdy

´
ÿ

βďα,|β|ě2

ż

Ω
CβαB

β
τ pb

n `BqBα´βτ By
“

pbn `BqByv
n`1 ` φyUb

n`1
‰

¨ Bατ v
n`1dxdy

fi I1 ` I2 ` I3.

(3.36)

By integration by parts and the boundary condition Bατ v
n`1|y“0 “ 0,

I1 “

ż

Ω
Bατ

“

pbn `BqByv
n`1 ` φyUb

n`1
‰

¨ By
“

pbn `BqBατ v
n`1

‰

dxdy

“

ż

Ω

 

pbn `BqBατ Byv
n`1 ` rBατ , pb

n `Bqs Byv
n`1 ` Bατ pφyUb

n`1q
(

¨
“

pbn `BqBατ Byv
n`1 ` Byb

nBατ v
n`1

‰

dxdy

ě
1

2

ż

Ω

“

pbn `BqBατ Byv
n`1

‰2
dxdy

´
1

2

ż

Ω

!

`

rBατ , pb
n `Bqs Byv

n`1 ` Bατ

`

φyUb
n`1

˘˘2
`
`

Byb
nBατ v

n`1
˘2
)

dxdy,

where (3.28) is used in the last inequality.
Similar to (3.33), we obtain

›

›Bατ

`

φyUb
n`1

˘›

›

L2pΩq
À }bn`1ptq}Hm (3.37)

due to (3.6).
Then combining the above two inequalities together and using (3.19), we obtain the following

estimate according to the similar argument in (3.33),

I1 ě
δ2

0

8

›

›Bατ Byv
n`1

›

›

2

L2pΩq
´ C

`

1` }bnptq}2Hm

˘

}vn`1ptq}2Hm . (3.38)

Integration by parts yields that

I2 “
ÿ

βďα,|β|“1

ż

Ω
CβαB

α´β
τ

“

pbn `BqByv
n`1 ` φyUb

n`1
‰

¨

”

Bβτ pb
n `BqBατ Byv

n`1 ` Bβτ Byb
nBατ v

n`1
ı

dxdy.
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Note that, for β ď α and |β| “ 1,
›

›

›
Bα´βτ

“

pbn `BqByv
n`1 ` φyUb

n`1
‰

›

›

›

L2pΩq
À p1` }bnptq}Hm´1q }Byv

n`1ptq}Hm´1 ` }bn`1ptq}Hm´1

À p1` }bnptq}Hm´1q }vn`1ptq}Hm .

Therefore, it holds

|I2| À
ÿ

βďα,|β|“1

p1` }bnptq}Hm´1q }vn`1ptq}Hm ¨

´

}Bβτ pb
n `Bq}L8pΩq}B

α
τ Byv

n`1}L2pΩq

`}Bβτ Byb
n}L8}B

α
τ v

n`1}L2pΩq

¯

ď
δ2

0

16

›

›Bατ Byv
n`1

›

›

2

L2pΩq
` C

`

1` }bnptq}4Hm

˘

}vn`1ptq}2Hm

(3.39)

provided m ě 4.
For I3, since β ď α and |β| ě 2, we write

Bβτ pb
n `BqBα´βτ By

“

pbn `BqByv
n`1 ` φyUb

n`1
‰

“ Bβ´γτ pBγτ b
n ` BγτBq ¨ B

α´β
τ By

“

pbn `BqByv
n`1 ` φyUb

n`1
‰

,

for some γ ď β, |γ| “ 2, and then
›

›

›
Bβτ pb

n `BqBα´βτ By
“

pbn `BqByv
n`1 ` φyUb

n`1
‰

›

›

›

L2pΩq

À p}Bγτ b
nptq}Hm´2 ` }B

γ
τBptq}Cm´2q ¨

›

›By
“

pbn `BqByv
n`1 ` φyUb

n`1
‰

ptq
›

›

Hm´2

À p1` }bnptq}Hmq ¨
`

}pbn `BqByv
n`1}Hm´1 ` }φyUb

n`1}Hm´1

˘

À
`

1` }bnptq}2Hm

˘

}vn`1ptq}Hm ,

provided m ě 4. As a consequence,

|I3| À
`

1` }bnptq}2Hm

˘

}vn`1ptq}Hm ¨ }Bατ v
n`1}L2pΩq À

`

1` }bnptq}2Hm

˘

}vn`1ptq}2Hm . (3.40)

Substituting (3.38), (3.39) and (3.40) into (3.36), we arrive at

´

ż

Ω
Bατ

 

pbn `BqBy
“

pbn `BqByv
n`1 ` φyUb

n`1
‰(

¨ Bατ v
n`1dxdy

ě
δ2

0

16

›

›Bατ Byv
n`1

›

›

2

L2pΩq
´ C

`

1` }bnptq}4Hm

˘

}vn`1ptq}2Hm .

(3.41)

We now turn to the estimates of the other terms in (3.31). By using (3.6) and (3.7), it follows
that

›

›Bατ pBxv
n`1 ´ φUxb

n`1q
›

›

L2pΩq
À }vn`1ptq}Hm ,

›

›Bατ

“

´pφyyUB `Bxqb
n`1 ` φUxv

n`1
‰›

›

L2pΩq
À }vn`1ptq}Hm ,

(3.42)

then,
ˇ

ˇ

ˇ

ˇ

ż

Ω
Bατ pBxv

n`1 ´ φUxb
n`1q ¨ Bατ b

n`1 ` Bατ

“

´pφyyUB `Bxqb
n`1 ` φUxv

n`1
‰

¨ Bατ v
n`1dxdy

ˇ

ˇ

ˇ

ˇ

À }vn`1ptq}2Hm .

(3.43)

Substituting (3.35), (3.41) and (3.43) into (3.31) yields

d

dt

›

›Bατ v
n`1ptq

›

›

2

L2pΩq
`
›

›Bατ Byv
n`1ptq

›

›

2

L2pΩq

À
`

1` }vnptq}4Hm

˘

}vn`1ptq}2Hm ` }B
α
τ r1ptq}

2
L2pΩq ` }B

α
τ r2ptq}

2
L2pΩq.

(3.44)
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Hence, summing the above estimates over α, |α| ď m gives

d

dt

›

›vn`1ptq
›

›

2

Bm,0 `
›

›Byv
n`1ptq

›

›

2

Bm,0 À
`

1` }vnptq}4Hm

˘

}vn`1ptq}2Hm ` }r1ptq}
2
Bm,0 ` }r2ptq}

2
Bm,0 .

(3.45)

3.4. Estimates on normal derivatives. In this subsection, we will derive the estimates on the
normal derivatives in the subsequent three steps.

Step I. In this step, we will establish the estimates for vn`1 with the first order normal derivative.
Applying the operator Bατ p|α| ď m´ 1q to the second equation in p3.20q, multiplying the resulting
equation by Bατ Btv

n`1 and integrating it over Ω lead to
ż

Ω
pBατ Btv

n`1q2dxdy `

ż

Ω
Bατ

 

´pbn `BqBxb
n`1 ` pvn ` UφqBxv

n`1 ´ pφyyUB `Bxqb
n`1 ` φUxv

n`1

´pbn `BqBy
“

pbn `BqByv
n`1 ` φyUb

n`1
‰(

Bατ Btv
n`1dxdy “

ż

Ω
Bατ r2 ¨ B

α
τ Btv

n`1dxdy.

(3.46)

Since |α| ď m´ 1 and m ě 4, by the similar arguments to those of (3.33) and (3.34), one has
›

›Bατ

“

´pbn `BqBxb
n`1 ` pvn ` UφqBxv

n`1 ´ pφyyUB `Bxqb
n`1 ` φUxv

n`1
‰›

›

L2pΩq

À p1` }vnptq}Hm´1q }Bxv
n`1ptq}Hm´1 ` }vn`1ptq}Hm´1

À p1` }vnptq}Hm´1q }vn`1ptq}Hm .

Then
ˇ

ˇ

ˇ

ˇ

ż

Ω
Bατ

“

´pbn `BqBxb
n`1 ` pvn ` UφqBxv

n`1 ´ pφyyUB `Bxqb
n`1 ` φUxv

n`1
‰

¨ Bατ Btv
n`1dxdy

ˇ

ˇ

ˇ

ˇ

ď
1

6
}Bατ Btv

n`1ptq}2L2pΩq ` C
`

1` }vnptq}2Hm´1

˘

}vn`1ptq}2Hm .

(3.47)

Similarly to (3.36), we have

´

ż

Ω
Bατ

 

pbn `BqBy
“

pbn `BqByv
n`1 ` φyUb

n`1
‰(

¨ Bατ Btv
n`1dxdy

“ ´

ż

Ω
pbn `BqBατ By

“

pbn `BqByv
n`1 ` φyUb

n`1
‰

¨ Bατ Btv
n`1dxdy

´
ÿ

βďα,|β|ě1

ż

Ω
CβαB

β
τ pb

n `BqBα´βτ By
“

pbn `BqByv
n`1 ` φyUb

n`1
‰

¨ Bατ Btv
n`1dxdy

“ J1 ` J2.

(3.48)

By integration by parts and the boundary condition Bατ Btv
n`1|y“0 “ 0,

J1 “

ż

Ω
Bατ

“

pbn `BqByv
n`1 ` φyUb

n`1
‰

¨
“

pbn `BqByB
α
τ Btv

n`1 ` Byb
nBατ Btv

n`1
‰

dxdy

“

ż

Ω
Bατ

“

pbn `BqByv
n`1 ` φyUb

n`1
‰

¨ pbn `BqBtB
α
τ Byv

n`1dxdy

`

ż

Ω
Bατ

“

pbn `BqByv
n`1 ` φyUb

n`1
‰

¨ Byb
nBατ Btv

n`1dxdy

“ J1
1 ` J

2
1 .

(3.49)
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Here

J1
1 “

ż

Ω

 

pbn `BqBατ Byv
n`1 ` rBατ , pb

n `Bqs Byv
n`1 ` Bατ pφyUb

n`1q
(

¨ pbn `BqBtB
α
τ Byv

n`1dxdy

“
1

2

d

dt

ż

Ω

“

pbn `BqBατ Byv
n`1

‰2
dxdy ´

1

2

ż

Ω
Btpb

n `Bq2
`

Bατ Byv
n`1

˘2
dxdy

`

ż

Ω
pbn `BqByB

α
τ Btv

n`1 ¨
 

rBατ , pb
n `Bqs Byv

n`1 ` Bατ pφyUb
n`1q

(

dxdy

ě
1

2

d

dt

ż

Ω

“

pbn `BqBατ Byv
n`1

‰2
dxdy ´

1

2
}Btpb

n `Bq2}L8pΩq
›

›Bατ Byv
n`1

›

›

2

L2pΩq

´ }bn `B}L8pΩq
›

›ByB
α
τ Btv

n`1
›

›

L2pΩq
¨
›

›rBατ , pb
n `Bqs Byv

n`1 ` Bατ pφyUb
n`1q

›

›

L2pΩq
.

Similar to (3.34) and (3.37), it holds, for |α| ď m´ 1, that
›

›rBατ , pb
n `Bqs Byv

n`1 ` Bατ pφyUb
n`1q

›

›

L2pΩq
À p1` }bnptq}Hm´1q}Byv

n`1ptq}Hm´2 ` }bn`1ptq}Hm´1

À p1` }bnptq}Hm´1q}vn`1ptq}Hm´1 .

Consequently, for |α| ď m´ 1, it follows that

J1
1 ě

1

2

d

dt

ż

Ω

“

pbn `BqBατ Byv
n`1

‰2
dxdy ´

1

8

›

›ByB
α
τ Btv

n`1
›

›

2

L2pΩq

´ Cp1` }bnptq}4Hm´1q}v
n`1ptq}2Hm .

(3.50)

For J2
1 , notice that, for |α| ď m´ 1,

›

›Bατ

“

pbn `BqByv
n`1 ` φyUb

n`1
‰›

›

L2pΩq
À p1` }bnptq}Hm´1q}Byv

n`1ptq}Hm´1 ` }bn`1ptq}Hm´1

À p1` }bnptq}Hm´1q}vn`1ptq}Hm ,

which implies that

|J2
1 | Àp1` }b

nptq}Hm´1q}vn`1ptq}Hm ¨ }Byb
nptq}L8pΩq}B

α
τ Btv

n`1ptq}L2pΩq

ď
1

6
}Bατ Btv

n`1ptq}2L2pΩq ` Cp1` }b
nptq}4Hm´1q}v

n`1ptq}2Hm ,
(3.51)

if m ě 4. Therefore, substituting (3.50) and (3.51) into (3.49) gives

J1 ě
1

2

d

dt

ż

Ω

“

pbn `BqBατ Byv
n`1

‰2
dxdy ´

1

8

›

›ByB
α
τ Btv

n`1
›

›

2

L2pΩq
´

1

6
}Bατ Btv

n`1ptq}2L2pΩq

´ Cp1` }bnptq}4Hm´1q}v
n`1ptq}2Hm .

(3.52)

J2 can be estimated as I3 in (3.36). Thus, for |α| ď m´ 1 with m ě 4, we obtain that
›

›

›
Bβτ pb

n `BqBα´βτ By
“

pbn `BqByv
n`1 ` φyUb

n`1
‰

›

›

›

L2pΩq
À

`

1` }bnptq}2Hm´1

˘

}vn`1ptq}Hm .

Hence

|J2| À
`

1` }bnptq}2Hm´1

˘

}vn`1ptq}Hm ¨ }Bατ Btv
n`1}L2pΩq

ď
1

6
}Bατ Btv

n`1ptq}2L2pΩq ` C
`

1` }bnptq}4Hm´1

˘

}vn`1ptq}2Hm .
(3.53)

Substituting (3.52) and (3.53) into (3.48) leads to

´

ż

Ω
Bατ

 

pbn `BqBy
“

pbn `BqByv
n`1 ` φyUb

n`1
‰(

¨ Bατ Btv
n`1dxdy

ě
1

2

d

dt

ż

Ω

“

pbn `BqBατ Byv
n`1

‰2
dxdy ´

1

8

›

›ByB
α
τ Btv

n`1
›

›

2

L2pΩq
´

1

3
}Bατ Btv

n`1ptq}2L2pΩq

´ Cp1` }bnptq}4Hm´1q}v
n`1ptq}2Hm .

(3.54)
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And
ˇ

ˇ

ˇ

ˇ

ż

Ω
Bατ r2 ¨ B

α
τ Btv

n`1dxdy

ˇ

ˇ

ˇ

ˇ

ď
1

6
}Bατ Btv

n`1ptq}2L2pΩq `
3

2
}Bατ r2ptq}

2
L2pΩq. (3.55)

Combining (3.46), (3.47), (3.54) and (3.55) together, we obtain

d

dt

ż

Ω

“

pbn `BqBατ Byv
n`1

‰2
dxdy ` }Bατ Btv

n`1ptq}2L2pΩq

ď
1

4

›

›ByB
α
τ Btv

n`1ptq
›

›

2

L2pΩq
` C}Bατ r2ptq}

2
L2pΩq ` Cp1` }v

nptq}4Hm´1q}v
n`1ptq}2Hm .

(3.56)

Summing it over α for |α| ď m´ 1 yields

d

dt

ż

Ω

ÿ

|α|ďm´1

“

pbn `BqBατ Byv
n`1

‰2
dxdy ` }Btv

n`1ptq}2Bm´1,0

ď
1

4

›

›Byv
n`1ptq

›

›

2

Bm,0 ` C}r2ptq}
2
Bm´1,0 ` Cp1` }v

nptq}4Hm´1q}v
n`1ptq}2Hm .

(3.57)

Step II. In this step, we will obtain the estimates of high oder normal derivatives of vn`1.
Precisely, we will show the following estimates for any t P r0, Tn`1q and m ě 4:

}B2
yv
n`1ptq}Hm´1 À 1`

`

1` }vnptq}2Hm

˘

}vn`1ptq}Hm , (3.58)

and

}B2
yv
n`1ptq}Hm´2 À 1`

ż t

0

`

1` }vnpsq}2Hm

˘

}vn`1psq}Hmds. (3.59)

In fact, we only need to prove (3.58). Because for any α P N3 with |α| ď m´ 2,

}BαB2
yv
n`1ptq}L2pΩq ď}B

αB2
yv
n`1p0q}L2pΩq `

ż t

0
}BtB

αB2
yv
n`1psq}L2pΩqds

ď}BαB2
yv
n`1p0q}L2pΩq `

ż t

0
}B2
yv
n`1psq}Hm´1ds,

then (3.59) follows from (3.16) and (3.58) immediately.
By the second equation in p3.20q, we write

pbn `Bq2B2
yv
n`1 “Btv

n`1 ´ pbn `BqBxb
n`1 ` pvn ` UφqBxv

n`1 ´ pbn `BqByb
nByv

n`1

´ pbn `BqBy
`

φyUb
n`1

˘

´ pφyyUB `Bxqb
n`1 ` φUxv

n`1 ´ r2.
(3.60)

To show (3.58), we apply the operator Bαp|α| ď m´ 1q on p3.60q to obtain

pbn `Bq2BαB2
yv
n`1 `

“

Bα, pbn `Bq2
‰

B2
yv
n`1

“BαBtv
n`1 ` Bα

 

´pbn `BqBxb
n`1 ` pvn ` UφqBxv

n`1 ´ pbn `BqByb
nByv

n`1

´pbn `BqBy
`

φyUb
n`1

˘

´ pφyyUB `Bxqb
n`1 ` φUxv

n`1
(

´ Bαr2.

Then,
›

›pbn `Bq2BαB2
yv
n`1

›

›

L2pΩq

ď
›

›

“

Bα, pbn `Bq2
‰

B2
yv
n`1

›

›

L2pΩq
`
›

›BαBtv
n`1

›

›

L2pΩq
` }Bαr2}L2pΩq

`
›

›Bα
 

´pbn `BqBxb
n`1 ` pvn ` UφqBxv

n`1 ´ pbn `BqByb
nByv

n`1

´pbn `BqBy
`

φyUb
n`1

˘

´ pφyyUB `Bxqb
n`1 ` φUxv

n`1
(›

›

L2pΩq
.
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As |α| ď m´ 1 and m ě 4, similar to (3.33) and (3.34), one has

›

›

“

Bα, pbn `Bq2
‰

B2
yv
n`1

›

›

L2pΩq
À

¨

˝1`
ÿ

βďα,|β|“1

}Bβbnptq}2Hm´2

˛

‚}B2
yv
n`1ptq}Hm´2

À
`

1` }bnptq}2Hm´1

˘

}vn`1ptq}Hm ,

and
›

›Bα
 

´pbn `BqBxb
n`1 ` pvn ` UφqBxv

n`1 ´ pbn `BqByb
nByv

n`1

´pbn `BqBy
`

φyUb
n`1

˘

´ pφyyUB `Bxqb
n`1 ` φUxv

n`1
(
›

›

L2pΩq

À

”

1` }vnptq}Hm´1 ` p1` }bnptq}Hm´1q}Byb
nptq}Hm´1

ı

¨

´

}Bxv
n`1ptq}Hm´1 ` }Byv

n`1ptq}Hm´1 ` }vn`1ptq}Hm´1

¯

À
`

1` }vnptq}2Hm

˘

}vn`1ptq}Hm .

Thus combining the above three estimates and using (3.19), we have
›

›BαB2
yv
n`1ptq

›

›

L2pΩq
À}Bαr2ptq}L2pΩq `

`

1` }vnptq}2Hm

˘

}vn`1ptq}Hm .

It follows that
›

›B2
yv
n`1ptq

›

›

Hm´1 À}r2ptq}Hm´1 `
`

1` }vnptq}2Hm

˘

}vn`1ptq}Hm . (3.61)

This implies (3.58) by using (3.14).
Moreover, combining (3.45) with (3.61) gives

d

dt

›

›vn`1ptq
›

›

2

Bm,0 `
›

›Byv
n`1ptq

›

›

2

Hm À
`

1` }vnptq}4Hm

˘

}vn`1ptq}2Hm ` }r1ptq}
2
Bm,0 ` }r2ptq}

2
Hm .

(3.62)

Step III. In this step we will establish the estimates of normal derivatives of bn`1. Applying the
operator Bα “ Bα0

t B
α1
x B

α2
y to the first equation in p3.20q with |α| ď m and α2 ě 1, then multiplying

the resulting equation by Bαbn`1 and integrating it over Ω yield

1

2

d

dt

ż

Ω
pBαbn`1q2dxdy `

ż

Ω
Bα

`

pvn ` UφqBxb
n`1

˘

¨ Bαbn`1dxdy

´

ż

Ω
Bα

`

pbn `BqBxv
n`1

˘

¨ Bαbn`1dxdy `

ż

Ω
Bα

`

Bxv
n`1 ´ φUxb

n`1
˘

¨ Bαbn`1dxdy

“

ż

Ω
Bαr1 ¨ B

αbn`1dxdy.

(3.63)

For the second term on the left-hand side of the above equality, we have
ż

Ω
Bα

`

pvn ` UφqBxb
n`1

˘

¨ Bαbn`1dxdy

“

ż

Ω

`

pvn ` UφqBxB
αbn`1 ` rBα, pvn ` Uφqs Bxb

n`1
˘

¨ Bαbn`1dxdy

“ ´
1

2

ż

Ω
Bxpv

n ` Uφq ¨
`

Bαbn`1
˘2
dxdy `

ż

Ω
rBα, pvn ` Uφqs Bxb

n`1 ¨ Bαbn`1dxdy.

And for |α| ď m and m ě 4, similar to (3.33), it holds that
›

›rBα, pvn ` Uφqs Bxb
n`1

›

›

L2pΩq
À

ÿ

βďα,|β|“1

›

›

›
Bβpvn ` Uφqptq

›

›

›

Hm´1

›

›Bxb
n`1ptq

›

›

Hm´1

Àp1` }vnptq}Hmq}bn`1ptq}Hm

(3.64)
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due to (3.6). Then
ˇ

ˇ

ˇ

ˇ

ż

Ω
Bα

`

pvn ` UφqBxb
n`1

˘

¨ Bαbn`1dxdy

ˇ

ˇ

ˇ

ˇ

À p1` }vnptq}Hmq}bn`1ptq}2Hm . (3.65)

For the third term on the left-hand side of (3.63), we have
ˇ

ˇ

ˇ

ˇ

ż

Ω
Bα

`

pbn `BqBxv
n`1

˘

¨ Bαbn`1dxdy

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

Ω

 

pbn `BqBxB
αvn`1 ` rBα, pbn `Bqs Bxv

n`1
(

¨ Bαbn`1dxdy

ˇ

ˇ

ˇ

ˇ

ď ε}BxB
αvn`1ptq}2L2pΩq ` Cε}pb

n `Bqptq}2L8pΩq}B
αbn`1ptq}2L2pΩq

`
›

›rBα, pbn `Bqs Bxv
n`1ptq

›

›

L2pΩq

›

›Bαbn`1ptq
›

›

L2pΩq
,

for some sufficiently small ε ą 0. Similarly to (3.34), one has
›

›rBα, pbn `Bqs Bxv
n`1ptq

›

›

L2pΩq
Àp1` }bnptq}Hmq}vn`1ptq}Hm .

Consequently, for α2 ě 1 in α, it follows, from the above two estimates, that
ˇ

ˇ

ˇ

ˇ

ż

Ω
Bα

`

pbn `BqBxv
n`1

˘

¨ Bαbn`1dxdy

ˇ

ˇ

ˇ

ˇ

ď ε}Byv
n`1ptq}2Hm ` Cε

`

1` }bnptq}2Hm

˘

}vn`1ptq}2Hm .

(3.66)

Moreover, by the similar arguments in (3.42), we have
›

›Bα
`

Bxv
n`1 ´ φUxb

n`1
˘›

›

L2pΩq
À

›

›vn`1ptq
›

›

HmpΩq
.

It implies
ˇ

ˇ

ˇ

ˇ

ż

Ω
Bα

`

Bxv
n`1 ´ φUxb

n`1
˘

¨ Bαbn`1dxdy

ˇ

ˇ

ˇ

ˇ

ď
›

›Bα
`

Bxv
n`1 ´ φUxb

n`1
˘

ptq
›

›

L2pΩq

›

›Bαbn`1ptq
›

›

L2pΩq
À

›

›vn`1ptq
›

›

2

HmpΩq
.

(3.67)

Substituting (3.65)-(3.67) into (3.63), it follows that

d

dt

›

›Bαbn`1ptq
›

›

2

L2pΩq
ďε}Byv

n`1ptq}2Hm ` }B
αr1ptq}

2
L2pΩq ` Cε

`

1` }vnptq}2Hm

˘

}vn`1ptq}2Hm .

Summing the above estimates over α for |α| ď m and α2 ě 1 yields

d

dt

›

›Byb
n`1ptq

›

›

2

Hm´1 ďCε}Byv
n`1ptq}2Hm ` }r1ptq}

2
Hm ` Cε

`

1` }vnptq}2Hm

˘

}vn`1ptq}2Hm . (3.68)

Combining (3.57), (3.62) and (3.68) together, and choosing ε suitably small, it holds that

d

dt

¨

˝

›

›vn`1ptq
›

›

2

Bm,0 `

ż

Ω

ÿ

|α|ďm´1

“

pbn `BqBατ Byv
n`1

‰2
dxdy `

›

›Byb
n`1ptq

›

›

2

Hm´1

˛

‚` }Byv
n`1ptq}2Hm

À }r1ptq}
2
Hm ` }r2ptq}

2
Hm `

`

1` }vnptq}4Hm

˘

}vn`1ptq}2Hm

(3.69)

for m ě 4.
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Integrating (3.69) with respect to t P r0, Tn`1q yields that

›

›vn`1ptq
›

›

2

Bm,0 `

ż

Ω

ÿ

|α|ďm´1

“

pbn `BqBατ Byv
n`1

‰2
ptqdxdy `

›

›Byb
n`1ptq

›

›

2

Hm´1

`

ż t

0
}Byv

n`1psq}2Hmds

ď
›

›vn`1p0q
›

›

2

Bm,0 `

ż

Ω

ÿ

|α|ďm´1

“

pbn `BqBατ Byv
n`1

‰2
p0qdxdy `

›

›Byb
n`1p0q

›

›

2

Hm´1

` C

ż t

0
}r1psq}

2
Hm ` }r2psq}

2
Hm `

`

1` }vnpsq}4Hm

˘

}vn`1psq}2Hmds.

(3.70)

By (3.16) and (3.23), we have

›

›vn`1p0q
›

›

2

Bm,0 `

ż

Ω

ÿ

|α|ďm´1

“

pbn `BqBατ Byv
n`1

‰2
p0qdxdy `

›

›Byb
n`1p0q

›

›

2

Hm´1 ÀM0.

Then, by applying the above estimate, the lower boundedness of bn ` B in (3.19) and (3.14) into
(3.70), there exists a constant C “ CpT,M,M0, δ0q such that

›

›vn`1ptq
›

›

2

Bm,0 `
›

›Byv
n`1ptq

›

›

2

Bm´1,0 `
›

›Byb
n`1ptq

›

›

2

Hm´1 `

ż t

0
}Byv

n`1psq}2Hmds

ď C ` C

ż t

0

`

1` }vnpsq}4Hm

˘

}vn`1psq}2Hmds,

or

›

›vn`1ptq
›

›

2

Bm,0 `
›

›Byv
n`1ptq

›

›

2

Bm´1,0 `
›

›bn`1ptq
›

›

2

Hm `

ż t

0
}Byv

n`1psq}2Hmds

ď C ` C

ż t

0

`

1` }vnpsq}4Hm

˘

}vn`1psq}2Hmds.

(3.71)

Furthermore, from (3.59) and (3.71), we obtain

›

›vn`1ptq
›

›

2

Hm `

ż t

0
}Byv

n`1psq}2Hmds ď C ` C

ż t

0

`

1` }vnpsq}4Hm

˘

}vn`1psq}2Hmds. (3.72)

3.5. Uniform estimates of vn. Now, we are ready to establish the uniform in n boundedness of
}vn`1ptq}Hm in a small time interval. Precisely, by applying the Gronwall inequality to (3.72), it
shows that there is a constant C ą 0 depending only on T, δ0,M and M0 such that

}vn`1ptq}2HmpΩq `

ż t

0
}Byv

n`1psq}2Hmds ď C exp

"

C

ż t

0
}vnpsq}4Hmds

*

. (3.73)

Thus, choosing suitably large M˚, there exists a sufficient small T̃ ą 0 which depends only on C
and M˚ such that

vn P ET̃ pM˚q ùñ }vn`1}HmpΩT̃ q
ďM˚. (3.74)

More precisely, denote by

C0 “ max

#

C, sup
tPr0,T0s

}v0ptq}Hm

+

(3.75)

with C given in (3.73), we have the following proposition.



20 C.-J. LIU, D. WANG, F. XIE, AND T. YANG

Proposition 3.1. Let T ˚ “ min
!

T0, T̂
)

with T̂ given by

T̂

¨

˝M `

?
C0

4

b

1´ 2C3
0 T̂

˛

‚“
δ0

2
, (3.76)

where M and C0 are given in (3.8) and (3.75) respectively. The approximate solution sequence
tvnu8n“0 constructed in the subsection 3.1 satisfies that

}vnptq}2Hm ď
C0

a

1´ 2C3
0 t
, @ t P r0, T ˚s, (3.77)

and

bnpt, x, yq `Bpt, xq ě
δ0

2
, @ pt, x, yq P ΩT˚ (3.78)

for any n ě 0.

Proof. We will prove this proposition by induction of n. First of all, by using the definition of C0

and T ˚, it is easy to know that (3.77) and (3.78) hold for n “ 0.
Assume that the estimates (3.77) and (3.78) are valid for some n ě 0, then as what are shown in

the above three subsections 3.2-3.4, we obtain (3.73) for vn`1, in which the constant C is replaced
by C0. Therefore, by the induction hypothesis, it follows that,

}vn`1ptq}2HmpΩq ď C0 exp

"

C0

ż t

0

C2
0

1´ 2C3
0s
ds

*

“
C0

a

1´ 2C3
0 t

(3.79)

for t P r0, T ˚s.
In addition, since

bn`1p0, x, yq `Bp0, xq “ b0px, yq ě δ0

due to (3.9), it follows that

bn`1pt, x, yq `Bpt, xq “bn`1p0, x, yq `Bp0, xq `

ż t

0
Btb

n`1ps, x, yq ` BtBps, xqds

ěδ0 ´

ż t

0
}Btb

n`1ps, ¨q}L8pΩq ` }BtBps, ¨q}L8pTxqds

ěδ0 ´

ż t

0
}bn`1psq}H3 ` }BtBps, ¨q}H1pTxqds

for any t P r0, T ˚s, where the Sobolev embedding inequalities are used. Then, together with (3.8)
and (3.79), this implies

bn`1pt, x, yq `Bpt, xq ě δ0 ´ t

˜ ?
C0

4
a

1´ 2C3
0 t
`M

¸

, @pt, x, yq P ΩT˚ .

By T ˚ ď T̂ and the definition of T̂ in (3.76), (3.78) holds for vn`1. Consequently, the proof of this
proposition is completed. �

From the above proposition, we obtain for T ˚ and

M˚ “
C0

a

1´ 2C3
0T

˚
, (3.80)
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the mapping Π defined by (3.24) and (3.20) is a mapping from ET˚pM˚q to ET˚pM˚q itself. In
particular, it implies that the approximate solutions tvnu8n“0 constructed by (3.17) and (3.20) are
uniform bounded in HmpΩT˚q with T ˚ ą 0 independent of n,

}vn}HmpΩT˚ q
ď M˚, @ n. (3.81)

3.6. Contraction in L2 norm. In this subsection, we will show the linear mapping Π defined in
(3.24) is a contraction mapping in L2 sense, at least in a small time interval.

Set

v̄n`1 “ pb̄n`1, v̄n`1q “
`

bn`1 ´ bn, vn`1 ´ vn
˘

, n ě 1.

Then by (3.20)-(3.22), v̄n`1pt, x, yq satisfies
$

&

%

Btb̄
n`1 ` pvn ` UφqBxb̄

n`1 ´ pbn `BqBxv̄
n`1 `Bxv̄

n`1 ´ φUxb̄
n`1 “ Rn1 ,

Btv̄
n`1 ´ pbn `BqBxb̄

n`1 ` pvn ` UφqBxv̄
n`1 ´ pbn `BqBy

`

pbn `BqByv̄
n`1 ` φyUb̄

n`1
˘

´pφyyUB `Bxqb̄
n`1 ` φUxv̄

n`1 “ Rn2 ,
(3.82)

with
#

Rn1 “ ´v̄
nBxb

n ` b̄nBxv
n,

Rn2 “ b̄nBxb
n ´ v̄nBxv

n ` b̄n
“

By ppb
n `BqByv

n ` φyUb
nq `

`

bn´1 `B
˘

B2
yv
n
‰

` pbn´1 `BqByv
nBy b̄

n.

As in subsection 3.1, we can obtain the following estimate similar to (3.30),

d

dt

›

›v̄n`1ptq
›

›

2

L2pΩq
`
›

›Byv̄
n`1ptq

›

›

2

L2pΩq

ď C
`

1` }vnptq}2H3

˘

}v̄n`1ptq}2L2pΩq ` C

ż

Ω
pRn1 ¨ b̄

n`1 `Rn2 ¨ v̄
n`1qdxdy, t P r0, T ˚s.

(3.83)

Denote

Rn2 “ pb
n´1 `BqByv

nBy b̄
n ` R̃n2 .

Then by the boundary condition v̄n`1|y“0 “ 0, we get
ż

Ω
Rn2 ¨ v̄

n`1dxdy “´

ż

Ω
b̄n

 

pbn´1 `BqByv
nByv̄

n`1 ` By
`

pbn´1 `BqByv
n
(

v̄n`1
˘

dxdy

`

ż

Ω
R̃n2 ¨ v̄

n`1dxdy

ď
1

2C
}Byv̄

n`1ptq}2L2pΩq `
C

2
}pbn´1 `BqByv

nptq}2L8pΩq}b̄
nptq}2L2pΩq

`

ż

Ω

´

R̃n2 ´ b̄
nBy

`

pbn´1 `BqByv
n
˘

¯

¨ v̄n`1dxdy.

Furthermore, based on the definition of Rn1 and Rn2 and the Sobolev embedding inequality, we have

}Rn1 ptq}L2pΩq ď }v
nptq}W 1,8pΩq}v̄

nptq}L2pΩq ď }v
nptq}H3}v̄nptq}L2pΩq,

and
›

›

›

´

R̃n2 ´ b̄
nBy

`

pbn´1 `BqByv
n
˘

¯

ptq
›

›

›

L2pΩq

À
`

1` }bnptq}W 1,8pΩq ` }b
n´1ptq}W 1,8pΩq

˘

}vnptq}W 2,8pΩq}v̄
nptq}L2pΩq

À
`

1` }vn´1ptq}2H3 ` }v
nptq}2H4

˘

}v̄nptq}L2pΩq.
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Consequently,

C

ż

Ω
Rn1 ¨ b̄

n`1 `Rn2 ¨ v̄
n`1dxdy

ď
1

2
}Byv̄

n`1ptq}2L2pΩq ` C1}v̄
n`1ptq}2L2pΩq ` C1

`

1` }vn´1ptq}4H3 ` }v
nptq}4H4

˘

}v̄nptq}2L2pΩq.

Substituting the above estimate into (3.83) and using the uniform estimate (3.81) for }vnptq}Hm

with m ě 4, it is found that there exists a constant C2 ą 0, depending only on T, δ0,M,M0 and
M˚, such that

d

dt

›

›v̄n`1ptq
›

›

2

L2pΩq
`
›

›Byv̄
n`1ptq

›

›

2

L2pΩq
ď C2

`

}v̄nptq}2L2pΩq ` }v̄
n`1ptq}2L2pΩq

˘

, t P r0, T ˚s.

By applying the Gronwall inequality on the above estimate, it follows that

sup
0ďsďt

›

›v̄n`1psq
›

›

2

L2pΩq
ď C2e

C2t ¨

ż t

0
}v̄npsq}2L2pΩqds ď C2te

C2t ¨ sup
0ďsďt

}v̄npsq}2L2pΩq

for any t P r0, T ˚s. Let

T˚ “ min

"

T ˚,
1

2C2eC2T˚

*

, (3.84)

we obtain

sup
0ďsďt

›

›v̄n`1psq
›

›

2

L2pΩq
ď

1

2
sup

0ďsďt
}v̄npsq}2L2pΩq , @ t P r0, T˚s, (3.85)

which indeed shows that the mapping (3.24) is contractive in L2.

3.7. Proof of Theorem 3.1. Based on the uniform estimates in (3.81) and contraction property of
(3.85), it follows that the approximate solution sequence tvnu8n“0 is a Cauchy sequences in HkpΩT˚q

with k ă m. Then tvnu8n“0 converges in HkpΩT˚q strongly. That is, there exists v “ pb, vq such
that

lim
nÑ`8

vn “ v, in HkpΩT˚q,

with

}v}HkpΩT˚ q
ďM˚. (3.86)

Let nÑ `8 in (3.20) and set

b1 “ b`Bpt, xq, u “ v ` Upt, xqφpyq.

Then pb1, uq solves (3.4) uniquely and this completes the proof of the Theorem 3.1.

3.8. Proof of Theorem 1.1. With the solution pb1, uq to (3.4) in hand, we define a function
ψ “ ψpt, x, yq in the following form.

y “

ż ψpt,x,yq

0

dη

b1pt, x, ηq
. (3.87)

It is straightforward to know that ψpt, x, yq is well-defined in ΩT˚ , because b1 ě
δ0
2 given in (3.10).

Set

pû, b̂1qpt, x, yq “ pu, b1qpt, x, ψpt, x, yqq, (3.88)

and

v̂pt, x, yq “ ´
pBtψ ` ûBxψq

b̂1
pt, x, yq, b̂2pt, x, yq “ ´Bxψpt, x, yq. (3.89)
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Then, pû, v̂, b̂1, b̂2qpt, x, yq is the desired solution of Theorem 1.1 and the proof of Theorem 1.1 is
thus completed.

4. Linear ill-posedness

In this section, we will prove Theorem 1.2 to show the linear instability of MHD boundary layer
when the tangential magnetic field is degenerate at one point. Let us recall the important work [5]
about the linear ill-posedness of Prandtl equation without the monotonicity condition, where the
key ingredient is to construct a strong unstable approximate solution to the linearized Prandtl
equation. For later use, we present first the construction of approximate solution to the velocity
field given in [5]. Without loss of generality, we assume that U2s paq ă 0, so that the differential
equation

#

BtByus
`

t, aptq
˘

` B2
yus

`

t, aptq
˘

a1ptq “ 0,

ap0q “ a,
(4.1)

defines a non-degenerate critical point curve y “ aptq of uspt, ¨q satisfying Byuspt, aptqq “ 0 and
B2
yus

`

t, aptq
˘

ă 0 for all t P r0, t0q with t0 being small enough. As proved in [5], there exists a pair
`

τ,W pzq
˘

such that the complex number τ satisfies =τ ă 0 and the smooth function W pzq satisfies
#
`

τ ´ z2
˘2 d
dzW ` i d

3

dz3

`

pτ ´ z2qW
˘

“ 0,

lim
zÑ´8

W pzq “ 0, lim
zÑ`8

W pzq “ 1.
(4.2)

Set

V pzq :“
`

τ ´ z2
˘

W pzq ´ 1R`
`

τ ´ z2
˘

. (4.3)

The approximate solution of the linearized Prandtl equation is defined as

puε, vεqpt, x, yq “ eiε
´1x

`

Uε, Vε
˘

pt, yq (4.4)

with
Uεpt, yq “ ieiε

´1
şt
0 ωpε,sqdsByWεpt, yq, Vεpt, yq “ ε´1eiε

´1
şt
0 ωpε,sqdsWεpt, yq, (4.5)

where

ωpε, tq :“ ´us
`

t, aptq
˘

`
?
ε
ˇ

ˇ

ˇ

B2
yus

`

t, aptq
˘

2

ˇ

ˇ

ˇ

1
2
τ, (4.6)

and

Wεpt, yq “ H
`

y ´ aptq
˘

”

uspt, yq ´ us
`

t, aptq
˘

`
?
ε
ˇ

ˇ

ˇ

B2
yus

`

t, aptq
˘

2

ˇ

ˇ

ˇ

1
2
τ
ı

`
?
εϕ

`

y ´ aptq
˘

ˇ

ˇ

ˇ

B2
yus

`

t, aptq
˘

2

ˇ

ˇ

ˇ

1
2
V
´
ˇ

ˇ

ˇ

B2
yus

`

t, aptq
˘

2

ˇ

ˇ

ˇ

1
4
¨
y ´ aptq

ε
1
4

¯

“vregε pt, yq ` vslε pt, yq.

(4.7)

Here Hp¨q is the Heaviside function and ϕp¨q is a smooth truncation function near 0. To make
the function puε, vεqpt, x, yq in (4.4) to be 2π´periodic in x, we take ε “ 1

n with n P N. It is
straightforward to check that,

puε, vεq|y“0 “ 0, lim
yÑ`8

uε “ 0,

and the divergence-free condition also holds for puε, vεq. And uεpt, x, yq “ eiε
´1xUεpt, yq is analytic

in the tangential variable x and W 2,8 in y. Moreover, pUε, Vεq has the growing mode like e
´=τ ¨ t?

ε ,
i.e., there are positive constants C0 and σ0, independent of ε, such that

C´1
0 e

σ0t?
ε ď }Uεpt, ¨q}W 2,8

α
ď C0e

σ0t?
ε , t P r0, t0q, (4.8)
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which is the key of instability mechanism.
Now we construct the approximate solution of problem (1.6) by choosing puε, vε, b1,ε, b2,εqpt, x, yq

in (1.6) to be the following form,

puε, vε, b1,ε, b2,εqpt, x, yq “ eiε
´1x pUε, Vε, B1,ε, B2,εq pt, yq. (4.9)

On one hand, pUε, Vεqpt, yq is taken to be the same form as given by (4.5)-(4.7) to preserve the
instability mechanism; on the other hand, pB1,ε, B2,εqpt, x, yq are taken as the following,

B1,εpt, yq “ ieiε
´1

şt
0 ωpε,sqdsByΦεpt, yq, B2,εpt, yq “ ε´1eiε

´1
şt
0 ωpε,sqdsΦεpt, yq (4.10)

with

Φεpt, yq “
bspyqWεpt, yq

ωpε, tq ` uspt, yq
“ bspyq ¨

vregε pt, yq ` vslε pt, yq

ωpε, tq ` uspt, yq
, (4.11)

where ωpε, tq and Wεpt, yq are given in (4.6) and (4.7) respectively. It is straightforward to show
that

puε, vε, b2,εq|y“0 “ 0, lim
yÑ`8

puε, b1,εq “ 0,

and the divergence-free conditions are satisfied. Also, puε, b1,εqpt, x, yq “ eiε
´1x

`

Uε, B1,εqpt, yq is

analytic in the tangential variable x and is in W 2,8 in y. Furthermore,
`

Uε, Vε, B1,ε, B2,ε

˘

pt, yq still
preserves the growing mode in t, i.e., there are positive constants C0 and σ0, independent of ε, such
that

C´1
0 e

σ0t?
ε ď

›

›

`

Uε, B1,εqpt, ¨q
›

›

W 2,8
α

ď C0e
σ0t?
ε , t P r0, t0q. (4.12)

Substituting the approximate solution (4.9) into the problem (1.6), it follows that
$

’

’

’

&

’

’

’

%

Btuε ` usBxuε ` vεByus ´ B
2
yuε ´ bsBxb1,ε ´ b2,εb

1
s “ r1

ε ,

Btb1,ε ` usBxb1,ε ` vεb
1
s ´ bsBxuε ´ b2,εByus “ r2

ε ,

Bxuε ` Byvε “ 0, Bxb1,ε ` Byb2,ε “ 0,

puε, vε, b2,εq|y“0 “ 0.

(4.13)

The remainder term pr1
ε , r

2
ε q can be represented by

pr1
ε , r

2
ε qpt, x, yq “ eiε

´1x
`

R1
ε , R

2
ε qpt, yq,

where

R1
ε pt, yq “ eiε

´1
şt
0 wpε,sqds

!

´ ε´1
”

uspt, yq ´ uspt, aptqq ´ B
2
yuspt, aptqq

py ´ aptqq2

2

ı

Byv
sl
ε pt, yq

` ε´1
”

Byuspt, yq ´ B
2
yus

`

t, aptq
˘

¨
`

y ´ aptq
˘

ı

vslε pt, yq

` ε´1b2spyq

«

Byv
sl
ε pt, yq

ωpε, tq ` uspt, yq
´

Byuspt, yq
`

ωpε, tq ` uspt, yq
˘2 v

sl
ε pt, yq

ff

` iBtByv
sl
ε pt, yq `Opε

8e
σ0t?
ε q

)

,

(4.14)

and

R2
ε pt, yq “ ieiε

´1
şt
0 wpε,sqdsB2

tyΦεpt, yq

“ ieiε
´1

şt
0 wpε,sqdsBt

#

bspyq

«

Byv
sl
ε pt, yq

ωpε, tq ` uspt, yq
´

Byuspt, yq
`

ωpε, tq ` uspt, yq
˘2 v

sl
ε pt, yq

ff

`b1spyq ¨
vregε pt, yq ` vslε pt, yq

ωpε, tq ` uspt, yq

*

.

(4.15)
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Here, the term Opε8q in (4.14) denotes the part of remainder with exponential decay in y from the
fact that V pzq decays exponentially and the derivatives of ϕp¨´aptqq vanish outside a neighborhood
of aptq.

Let z “
y ´ aptq

ε1{4
. Note that in the vicinity of ty “ aptqu,

ωpε, tq ` uspt, yq “ uspt, yq ´ us
`

t, aptq
˘

`
?
ε
ˇ

ˇ

ˇ

B2
yus

`

t, aptq
˘

2

ˇ

ˇ

ˇ

1
2
τ “ Op

?
εqp1` z2q,

and

bspyq “ Op1qpy ´ aq2 “ Op1qry ´ aptq ` aptq ´ as2 “ Op1qpt` ε1{4zq2,

b1spyq “ Op1qpy ´ aq “ Op1qry ´ aptq ` aptq ´ as “ Op1qpt` ε1{4zq.

Therefore, based on the exponential decay properties of vslε pt, yq and the formulations (4.14) and
(4.15) of R1

ε pt, yq and R2
ε pt, yq, we have

›

›

`

R1
ε , R

2
ε

˘

pt, ¨q
›

›

W 0,8
α

ď C1e
σ0t?
ε pε´1{4 ` ε´5{4t4q, @α ě 0 (4.16)

with the same constant σ0 ą 0 given in (4.12).

Proof of Theorem 1.2. With the approximate solutions constructed above, we can apply the
approach in [5] to prove Theorem 1.2. The proof relies on the verification of (1.8) for the tangential
differential operator through contradiction.

Suppose that (1.8) does not hold, that is, for all σ ą 0, there exists δ ą 0, α,m ě 0 and µ P r0, 1
4q

such that

sup
0ďsătďδ

}e´σpt´sq
?
|Bx|T pt, xq}LpHmα ,Hm´µα q

ă `8. (4.17)

Introduce the operator

Tεpt, sq : W 0,8
α pR`q ÞÑW 0,8

α pR`q
where

Tεpt, sqpU0, B0q :“ e´iε
´1xT pt, sq

´

eiε
´1xpU0, B0q

¯

(4.18)

with T pt, sq being defined in (1.7). From (4.17), we have

}Tεpt, sq}LpW 0,8
α ,W 0,8

α q
ď C2ε

´µe
σpt´sq
?
ε , @ 0 ď s ă t ď δ (4.19)

for some constant C2 ą 0 independent of ε.
Next, we introduce the operator

Lpupt, x, yq, b1pt, x, yqq “
´

usBxu` vByus ´ B
2
yu´ bsBxh´ b2b

1
s,

usBxb1 ` vb
1
s ´ bsBxu´ b2Byus

¯

with

vpt, x, yq “ ´

ż y

0
Bxupt, x, ỹqdỹ, b2pt, x, yq “ ´

ż y

0
Bxb1pt, x, ỹqdỹ.

Denote

Lε :“ e´iε
´1x L eiε

´1x,

and let pU,B1qpt, yq be a solution to the problem

BtpU,B1q ` LεpU,B1q “ 0, pU,B1q|t“0 “ pUε, B1,εqp0, yq,

where Uε and B1,εpt, yq are given in (4.5) and (4.10) respectively. Then, we have

pU,B1qpt, yq “ Tεpt, 0qpUε, B1,εqp0, yq,
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and by using (4.12) and (4.19), it follows that

}pU,B1qpt, ¨q}W 0,8
α

ď C2ε
´µe

σt?
ε }pUε, B1,εqp0, ¨q}W 0,8

α
ď C3ε

´µe
σt?
ε , @t P p0, δs (4.20)

for some constant C3 ą 0 independent of ε.
On the other hand, the difference pŨ , B̃1q :“ pU´Uε, B1´B1,εq can be obtained by the Duhamel

principle:

pŨ , B̃1qpt, ¨q “

ż t

0
Tεpt, sqpR1

ε , R
2
ε qps, ¨qds, @ t ď δ. (4.21)

Combining (4.16), (4.19) and (4.21), and choosing σ ă σ0, we have

}pŨ , B̃1qpt, ¨q}W 0,8
α

ď C1C2ε
´µ

ż t

0
e
σpt´sq
?
ε e

σ0s?
ε pε´1{4 ` ε´5{4s4qds

À ε
1
4
´µe

σ0t?
ε ` ε´µ`

5
4 e

σ0t?
ε
`

1`
t4

ε2
q

ď C4ε
1
4
´µe

σ0t?
ε
`

1`
t4

ε

˘

,

(4.22)

where the constant C4 ą 0 is independent of ε. Then, by using (4.22) and (4.12), we obtain that
for sufficiently small ε,

}pU,B1qpt, ¨q}W 0,8
α

ě }pUε, B1,εqpt, ¨q}W 0,8
α
´ }pŨ , B̃1qpt, ¨q}W 0,8

α

ě C´1
0 e

σ0t?
ε ´ C4ε

1
4
´µe

σ0t?
ε
`

1`
t4

ε

˘

ě C5e
σ0t?
ε ,

(4.23)

provided that t ! ε1{4. As σ ă σ0, comparing (4.20) with (4.23), the contradiction arises when
µ

σ0´σ
| ln ε|

?
ε ! t ! ε1{4 with sufficiently small ε. Thus, the proof of Theorem 1.2 is completed. �

Remark 4.1. Through the detailed calculation of the error terms pr1
ε , r

2
ε q given by (4.13), we know

that the diffusion term B2
yuε generates the term Opε´1{4q in R1

ε pt, yq. Thus, if we consider the MHD
boundary layer problem with magnetic diffusion and the corresponding background magnetic field
depends on the time variable, by applying a similar approach as above we can obtain the same
result as Theorem 1.2.

Appendix A. Derivation of Boundary Layer System

In this section, we will give a formal derivation of the boundary layer equations (1.1). When the
magnetic Reynolds number is much larger than the hydrodynamic Reynolds number, the magnetic
diffusion term can be ignored in the derivation. That is, we consider the following two dimensional
incompressible MHD equations with a small viscosity coefficient in a domain with a flat boundary:

$

&

%

Btu
ε ` puε ¨∇quε `∇pε ´ pbε ¨∇qbε “ ε4uε,

Btb
ε ` puε ¨∇qbε “ pbε ¨∇quε,

divuε “ 0, divbε “ 0,

(A.1)

where t ą 0, x “ px, yq P TˆR`, uε “ puε1, u
ε
2q the velocity, bε “ pbε1, b

ε
2q the magnetic field, pε the

total pressure:

pε “ pεf `
|bε|2

2
,

where pεf is the fluid pressure. The small parameter ε ą 0 denotes the viscosity coefficient.
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The initial data for (A.1) is given by

uεp0, x, yq “ u0px, yq, bεp0, x, yq “ b0px, yq. (A.2)

The no-slip boundary condition is imposed on velocity:

uε|y“0 “ 0. (A.3)

Since the no-slip boundary condition (A.3) is given for the velocity, there is no need to impose any
boundary condition on magnetic field bε, at least for the classical solutions. Indeed, the restriction
of equations (A.1) on the boundary and using the boundary condition (A.3) imply

bε2pt, x, yq|y“0 ” bε2p0, x, yq|y“0 “ b02px, 0q. (A.4)

When the hydrodynamic Reynolds number tends to infinity, which corresponds to the viscocity
coefficient ε tending to zero, the related limited system of (A.1) is the ideal incompressible MHD
system:

$

&

%

Btu
0 ` pu0 ¨∇qu0 `∇p0 “ pb0 ¨∇qb0,

Btb
0 ` pu0 ¨∇qb0 “ pb0 ¨∇qu0,

divu0 “ 0, divb0 “ 0.

(A.5)

To avoid the initial layer in the study of the vanishing viscosity limit process for (A.1), the initial
data for (A.5) is taken to be the same as the initial data of viscous flow (A.2), i.e.,

u0p0, x, yq “ u0px, yq, b0p0, x, yq “ b0px, yq. (A.6)

For the well-posedness of the ideal incompressible MHD equations (A.5), we may impose the fol-
lowing boundary condition for the normal components of velocity and magnetic field:

u0
2|y“0 “ 0, b02|y“0 “ 0. (A.7)

Hence, it is necessary that the initial data b02px, yq satisfies the compatibility condition

b02px, 0q “ 0,

which, together with (A.4), imply

bε2pt, x, 0q “ 0. (A.8)

Consequently, we impose the boundary conditions (A.3) and (A.8) for (A.1).

Remark A.1. We can use the process in Section 2 to reformulate the viscous MHD equations (A.1).
Precisely, consider the stream function ψε of the magnetic field bε:

Byψ
ε “ bε1, ´Bxψ

ε “ bε2, ψε|y“0 “ 0.

Then, by using ψε we can rewrite the equations (A.1) as
#

Btψ
ε ` puε ¨∇qψε “ 0,

Btu
ε ` puε ¨∇quε `∇pεf `4ψε∇ψε “ ε4uε,

which is exactly the two-dimensional incompressible Navier-Stokes-Korteweg equations. Therefore
in the two-dimensional case the effect of magnetic field on the fluid can be regarded in some sense
as some kind of capillarity; see also [18,35].

To study the vanishing viscosity limit for (A.1)-(A.3) and (A.8), the asymptotic boundary layer
expansion is an effective tool, which was proposed by L. Prandtl in his pioneering work [34].
Moreover, the well-posedness theory and the properties of solutions to the leading order nonlinear
boundary layer equations play a key role in studying the vanishing viscosity limit. To derive the
related MHD boundary layer equations, we follow the boundary layer expansion in [34] to write

uε1pt, x, yq “ u0
1pt, x, yq ` u

b
1pt, x, ỹq ` op1q, (A.9)
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uε2pt, x, yq “ u0
2pt, x, yq `

?
ε
`

u1
2pt, x, yq ` u

b
2pt, x, ỹq

˘

` op
?
εq, (A.10)

bε1pt, x, yq “ b01pt, x, yq ` b
b
1pt, x, ỹq ` op1q, (A.11)

bε2pt, x, yq “ b02pt, x, yq `
?
ε
`

b12pt, x, yq ` b
b
2pt, x, ỹq

˘

` op
?
εq, (A.12)

pεpt, x, yq “ p0pt, x, yq ` pbpt, x, ỹq ` op1q, (A.13)

where the fast variable ỹ “ ε´1{2y.
Substituting the ansatz (A.9)-(A.13) into (A.1) and comparing terms in each equation accord-

ing to the order of ε, pu0
1, u

0
2, b

0
1, b

0
2, p

0qpt, x, yq satisfies (A.5); pu1
2, b

1
2qpt, x, yq represents the next

order of inner flow that can be obtained by solving a system of linear ideal MHD equations; and
pub1,

?
εub2, b

b
1,
?
εbb2, p

bq represents the boundary layer that decays to zero as ỹ tends to `8. Set
$

’

’

’

’

’

&

’

’

’

’

’

%

upt, x, ỹq “ u0
1pt, x, 0q ` u

b
1pt, x, ỹq,

vpt, x, ỹq “ u1
2pt, x, 0q ` u

b
2pt, x, ỹq ` ỹByu

0
2pt, x, 0q,

b1pt, x, ỹq “ b01pt, x, 0q ` b
b
1pt, x, ỹq,

b2pt, x, ỹq “ b12pt, x, 0q ` b
b
2pt, x, ỹq ` ỹByb

0
2pt, x, 0q,

ppt, x, ỹq “ p0pt, x, 0q ` pbpt, x, ỹq,

which correspond to the leading order terms in the expansion (A.9)-(A.13) with respect to ε. Here
pu, v, b1, b2, pqpt, x, ỹq satisfies

$

’

’

’

’

’

&

’

’

’

’

’

%

Btu` uBxu` vBỹu` Bxp “ B
2
ỹu` b1Bxb1 ` b2Bỹb1,

Bỹp “ 0,

Btb1 ` uBxb1 ` vBỹb1 “ b1Bxu` b2Bỹu,

Btb2 ` uBxb2 ` vBỹb2 “ b1Bxv ` b2Bỹv,

Bxu` Bỹv “ 0, Bxb1 ` Bỹb2 “ 0.

(A.14)

According to (A.2), (A.6), (A.9) and (A.11), the initial data of (A.14) are given by

up0, x, ỹq “ 0, b1p0, x, ỹq “ b01p0, x, 0q “ b01px, 0q, (A.15)

where (A.6) and the compatibility condition u01px, 0q “ 0 are used.
The boundary conditions and the far-field conditions are written as follows,

u|ỹ“0 “ v|ỹ“0 “ b2|ỹ“0 “ 0, (A.16)

and

lim
ỹÑ8

upt, x, ỹq “ u0
1pt, x, 0q :“ Upt, xq, lim

ỹÑ8
b1pt, x, ỹq “ b01pt, x, 0q :“ Bpt, xq. (A.17)

Remark A.2. The boundary layer problem (A.14)-(A.17) also can be derived by using the scaling
method proposed in [33]. Indeed, one can choose the following scale transform:

t “ t, x “ x, ỹ “ ε´
1
2 y,

and
#

upt, x, ỹq “ uε1pt, x, yq,

vpt, x, ỹq “ ε´
1
2uε2pt, x, yq,

ppt, x, ỹq “ pεpt, x, yq,

#

b1pt, x, ỹq “ bε1pt, x, yq,

b2pt, x, ỹq “ ε´
1
2 bε2pt, x, yq.
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To simplify the system (A.14), note that the second equation in (A.14) shows that there is no
strong boundary layer for pressure, that is, pbpt, x, ỹq ” 0. As a consequence,

ppt, x, ỹq ” p0pt, x, 0q :“ ppt, xq.

In addition, the fourth equation in pA.14q is a direct consequence of the third and fifth equations in
pA.14q and the boundary conditions pA.16q, at least it holds true for smooth solutions. Therefore,
the system (A.14) is reduced to

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Btu` uBxu` vBỹu´ B
2
ỹu´ b1Bxb1 ´ b2Bỹb1 “ ´Bxp,

Btb1 ` uBxb1 ` vBỹb1 ´ b1Bxu´ b2Bỹu “ 0,

Bxu` Bỹv “ 0, Bxb1 ` Bỹb2 “ 0,

pu, v, b2q|ỹ“0 “ 0, lim
ỹÑ`8

pu, b1qpt, x, ỹq “ pU,Bqpt, xq,

pu, b1q|t“0 “ pu0, b0qpx, ỹq.

(A.18)

Moreover, the known functions U,B and p satisfy Bernoulli’s laws
"

BtU ` UBxU ` Bxp “ BBxB,

BtB ` UBxB “ BBxU.
(A.19)

Appendix B. Proof of Lemma 3.1

Finally, we give the proof of Lemma 3.1.

Proof of Lemma 3.1. We only prove the inequality (3.6) since the proof of (3.7) is similar. The
proof is divided into two cases.

Case 1: α “ 0 or β “ 0. Without loss of generality, we assume α “ 0. By the Sobolev embedding
and |β| ď m,

}pu ¨ Bβvqpt, ¨q}L2pΩq ď}upt, ¨q}L8pΩq}B
βvpt, ¨q}L2pΩq

À}uptq}H2}vptq}Hm ,

which implies (3.6) for m ě 2.
Case 2: |α| ě 1 and |β| ě 1. From |α| ` |β| ď m, there exist |α| ď m ´ 1 and |β| ď m ´ 1, so

that the Sobolev embedding gives
›

›

`

Bαu ¨ Bβv
˘

pt, ¨q
›

›

L2pΩq
ď
›

›Bαupt, ¨q
›

›

L4pΩq
¨
›

›Bβvpt, ¨q
›

›

L4pΩq

À
›

›Bαupt, ¨q
›

›

H1pΩq
}Bαvptq}H1pΩq

À
›

›uptq
›

›

H|α|`1}vptq}H|β|`1 ,

which implies (3.6). Hence, we complete the proof of Lemma 3.1.
�

Acknowledgement

The research of C.-J. Liu was sponsored by National Natural Science Foundation of China (Grant
No. 11743009, 11801364), Shanghai Sailing Program (Grant No. 18YF1411700) and Shanghai Jiao
Tong University (Grant No. WF220441906). The research of D. Wang was partially supported by
the National Science Foundation under grants DMS-1613213 and DMS-1907519. The research of F.
Xie was partially supported by National Natural Science Foundation of China (Grant No.11571231,
11831003) and the China Scholarship Council. The research of T. Yang was partially supported by
the General Research Fund of Hong Kong, CityU No.11302518, and the National Natural Science
Foundation of China (Grant no. 11971200).



30 C.-J. LIU, D. WANG, F. XIE, AND T. YANG

References

[1] R. Alexandre, Y.-G. Wang, C.-J. Xu, T. Yang, Well posedness of the Prandtl equation in Sobolev spaces. J.
Amer. Math. Soc. 28 (2015), no. 3, 745-784.

[2] H. Dietert, D. Gérard-Varet, Well-posedness of the Prandtl equations without any structural assumption. Ann.
PDE 5 (2019), no. 1, Art. 8, 51pp.

[3] W.-N. E, B. Engquist, Blowup of solutions of the unsteady Prandtl’s equation. Comm. Pure Appl. Math. 50
(1997), no. 12, 1287-1293.

[4] M. Fei, T. Tao, Z. Zhang, On the zero-viscosity limit of the Navier-Stokes equations in R3
` without analyticity.

J. Math. Pures Appl. (9) 112 (2018), 170-229.
[5] D. Gérard-Varet, E. Dormy, On the ill-posedness of the Prandtl equation. J. Amer. Math. Soc. 23 (2010), no.

2, 591-609.
[6] D. Gérard-Varet, Y. Maekawa, N. Masmoudi, Gevrey stability of Prandtl expansions for 2D Navier-Stokes

flows. Duke Math. J. 167 (2018), no. 13, 2531-2631.
[7] D. Gérard-Varet, N. Masmoudi, Well-posedness for the Prandtl system without analyticity or monotonicity.
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